Publications by authors named "V Stehlik-Tomas"

Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress.

View Article and Find Full Text PDF

Certain species of lactic acid bacteria (LAB), as well as other microorganisms, can bind metal ions to their cells surface or transport and store them inside the cell. Due to this fact, over the past few years interactions of metal ions with LAB have been intensively investigated in order to develop the usage of these bacteria in new biotechnology processes in addition to their health and probiotic aspects. Preliminary studies in model aqueous solutions yielded LAB with high absorption potential for toxic and essential metal ions, which can be used for improving food safety and quality.

View Article and Find Full Text PDF

The production of Saccharomyces cerevisiae cells enriched with copper and the effects of adding copper ions to different media on yeast cell growth and ethanol production were studied. In the media Cu(2+) concentrations of up to 0.094 mM had no effect on alcoholic fermentation, whereas higher Cu(2+) concentrations markedly decreased yeast cell growth rate and ethanol production.

View Article and Find Full Text PDF

Fermentations with yeast Saccharomyces cerevisiae in semiaerobic and in static conditions with the addition of chromic chloride into the used molasses medium were analysed. It was proved that the addition of optimal amounts of CrCl3 into the basal medium enhanced the kinetics of alcohol fermentations. The addition of 200 mg/l CrCl3 into the medium stimulated both the yeast growth and the ethanol production in all experimental conditions.

View Article and Find Full Text PDF