Excessive concentrations of oxidized phospholipids (OxPL), the products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (PAPC) oxidation have been detected in atherosclerosis, septic inflammation, and acute lung injury (ALI) and have been shown to induce vascular barrier dysfunction. In contrast, oxidized PAPC (OxPAPC) at low concentrations exhibit potent barrier protective effects. The nature of such biphasic effects remains unclear.
View Article and Find Full Text PDFIntroduction: Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC) differentially modulate endothelial cell (EC) barrier function in a dose-dependent fashion. Vascular endothelial growth factor receptor-2 (VEGFR2) is involved in the OxPAPC-induced EC inflammatory activation. This study examined a role of VEGFR2 in barrier dysfunction caused by high concentrations of OxPAPC and evaluated downstream signaling mechanisms resulting from the effect of OxPAPC in EC from pulmonary and systemic circulation.
View Article and Find Full Text PDFThe generation of phospholipid oxidation products in atherosclerosis, sepsis, and lung pathologies affects endothelial barrier function, which exerts significant consequences on disease outcomes in general. Our group previously showed that oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (OxPAPC) at low concentrations increases endothelial cell (EC) barrier function, but decreases it at higher concentrations. In this study, we determined the mechanisms responsible for the pulmonary endothelial cell barrier dysfunction induced by high OxPAPC concentrations.
View Article and Find Full Text PDFEosinophils are granulated leukocytes that are involved in many inflammation-associated pathologies including airway inflammation in asthma. Resolution of eosinophilic inflammation and return to homeostasis is in part due to endogenous chemical mediators, for example, lipoxins, resolvins, and protectins. Lipoxins are endogenous eicosanoids that demonstrate antiinflammatory activity and are synthesized locally at sites of inflammation.
View Article and Find Full Text PDFReversal of eosinophilic inflammation has been an elusive therapeutic goal in the management of asthma pathogenesis. In this regard, GM-CSF is a primary candidate cytokine regulating eosinophil activation and survival in the lung; however, its molecular mechanism of propagation and maintenance of stimulated eosinophil activation is not well understood. In this study, we elucidate those late interactions occurring between the GM-CSF receptor and activated eosinophil signaling molecules.
View Article and Find Full Text PDF