Amorphous silicon carbide (a-SiC) is a wide-bandgap semiconductor with high robustness and biocompatibility, making it a promising material for applications in biomedical device passivation. a-SiC thin film deposition has been a subject of research for several decades with a variety of approaches investigated to achieve optimal properties for multiple applications, with an emphasis on properties relevant to biomedical devices in the past decade. This review summarizes the results of many optimization studies, identifying strategies that have been used to achieve desirable film properties and discussing the proposed physical interpretations.
View Article and Find Full Text PDFScalable fabrication of Si nanowires with a critical dimension of about 100 nm is essential to a variety of applications. Current techniques used to reach these dimensions often involve e-beam lithography or deep-UV (DUV) lithography combined with resolution enhancement techniques. In this study, we report the fabrication of <150 nm Si nanowires from SOI substrates using DUV lithography ( = 248 nm) by adjusting the exposure dose.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2020
Field effect transistors (FETs) based on networks of randomly oriented Si nanowires (Si nanonets or Si NNs) were biomodified using Thrombin Binding Aptamer (TBA-15) probe with the final objective to sense thrombin by electrical detection. In this work, the impact of the biomodification on the electrical properties of the Si NN-FETs was studied. First, the results that were obtained for the optimization of the (3-Glycidyloxypropyl)trimethoxysilane (GOPS)-based biofunctionalization process by using UV radiation are reported.
View Article and Find Full Text PDFThis work reports on the label-free electrical detection of DNA molecules for the first time, using silicon carbide (SiC) as a novel material for the realization of nanowire field effect transistors (NWFETs). SiC is a promising semiconductor for this application due to its specific characteristics such as chemical inertness and biocompatibility. Non-intentionally n-doped SiC NWs are first grown using a bottom-up vapor-liquid-solid (VLS) mechanism, leading to the NWs exhibiting needle-shaped morphology, with a length of approximately 2 μm and a diameter ranging from 25 to 60 nm.
View Article and Find Full Text PDF