Publications by authors named "V Srot"

Teeth exemplify architectures comprising an interplay of inorganic and organic constituents, resulting in sophisticated natural composites. Rodents (Rodentia) showcase extraordinary adaptations, with their continuously growing incisors surpassing human teeth in functional and structural optimizations. In this study, employing state-of-the-art direct atomic-scale imaging and nanoscale spectroscopies, we present compelling evidence that the release of material from ameloblasts and the subsequent formation of iron-rich enamel and surface layers in the constantly growing incisors of rodents are complex orchestrated processes, intricately regulated and independent of environmental factors.

View Article and Find Full Text PDF

Control of nanomaterial dimensions with atomic precision through synthetic methods is essential to understanding and engineering of nanomaterials. For single-layer inorganic materials, size and shape controls have been achieved by self-assembly and surface-catalyzed reactions of building blocks deposited at a surface. However, the scope of nanostructures accessible by such approach is restricted by the limited choice of building blocks that can be thermally evaporated onto surfaces, such as atoms or thermostable molecules.

View Article and Find Full Text PDF

A novel focused ion beam (FIB)-based methodology for the preparation of clean and artifact-free specimens on micro-electro-mechanical-system (MEMS)-based chips for in-situ electrical and electro-thermal experiments in a (scanning) transmission electron microscope ((S)TEM) is introduced. Owing to an alternative geometry, the lamellae are attached to a MEMS-based chip directly after the lift-out procedure and afterward further treated or thinned to electron transparency. The quality of produced lamellae on a chip resembles the quality of a classical FIB-prepared sample that is here demonstrated by high-resolution STEM imaging and analytical techniques.

View Article and Find Full Text PDF

Developmental Defects of Enamel (DDE) such as Dental Fluorosis (DF) and Molar Incisor Hypomineralization (MIH) are a major public health problem. Their clinical aspects are extremely variable, challenging their early and specific diagnosis and hindering progresses in restorative treatments. Here, a combination of macro-, micro- and nano-scale structural and chemical methods, including, among others, Atom Probe Tomography recently applied on tooth enamel, were used to study and compare MIH, DF and healthy teeth from 89 patients.

View Article and Find Full Text PDF

ZnO/ZnS core/shell nanostructures, which are studied for diverse possible applications, ranging from semiconductors, photovoltaics, and light-emitting diodes (LED), to solar cells, infrared detectors, and thermoelectrics, were synthesized and characterized by XRD, HR-(S)TEM, and analytical TEM (EDX and EELS). Moreover, band-gap measurements of the ZnO/ZnS core/shell nanostructures have been performed using UV/Vis DRS. The experimental results were combined with theoretical modeling of ZnO/ZnS (hetero)structures and band structure calculations for ZnO/ZnS systems, yielding more insights into the properties of the nanoparticles.

View Article and Find Full Text PDF