Modern photon counting detectors allow the calculation of virtual monoenergetic or material decomposed X-ray images but are not yet used for dental panoramic radiography systems. To assess the diagnostic potential and image quality of photon counting detectors in dental panoramic radiography, ethics approval from the local ethics committee was obtained for this retrospective study. Conventional CT scans of the head and neck region were segmented into bone and soft tissue.
View Article and Find Full Text PDFPanoramic x-ray imaging is a versatile, low-dose imaging tool, which is routinely used for dental applications. In this work, we explore a further improvement of the concept by introducing recently developed spectral photon-counting detector technology into a conventional panoramic imaging unit. In addition we adapt spectral material decomposition algorithms to panoramic imaging needs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2015
Superhydrophobic surfaces without low surface-energy (hydrophobic) modification such as silanization or (fluoro)polymer coatings are crucial for water-repellent applications that need to survive under harsh UV or IR exposures and mechanical abrasion. In this work, robust low-hysteresis superhydrophobic surfaces are demonstrated using a novel hierarchical silicon structure without a low surface-energy coating. The proposed geometry produces superhydrophobicity out of silicon that is naturally hydrophilic.
View Article and Find Full Text PDF