We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a <120 fs pulse duration and pulse energy of 0.
View Article and Find Full Text PDFWe demonstrate a four-stage optical parametric chirped-pulse amplification system that delivers carrier-envelope phase-stable approximately 1.5 microm pulses with energies up to 12.5 mJ before recompression.
View Article and Find Full Text PDFCarrier-envelope phase-stable 4 microJ pulses at approximately 1.5 microm are obtained from a femtosecond Yb:KGW-MOPA-pumped two-stage optical parametric amplifier. This novel technology represents a highly attractive alternative to traditional Ti:sapphire front-ends for seeding multimillijoule-level optical parametric chirped-pulse amplifiers.
View Article and Find Full Text PDFNarrow-linewidth optical pulses at wavelengths near 630 nm with 2.2-mJ energy were generated with 61% efficiency in a periodically poled KTiOPO(4) parametric oscillator pumped by a frequency-doubled Q -switched Nd:YAG laser. The tuning range was extended to 30 nm by a noncollinear elliptical pumping geometry.
View Article and Find Full Text PDFWe predict that in traveling-wave degenerate parametric downconversion the Bessel beam pump stimulates the appearance of a nondiffracting X-wave from quantum noise amplification. Numerical simulation results of downconversion in ADP crystal are presented, along with preliminary experimental data.
View Article and Find Full Text PDF