Publications by authors named "V Smaluk"

The resolution of a mega-electron-volt scanning transmission electron microscope (MeV-STEM) is primarily governed by the properties of the incident electron beam and angular broadening effects that occur within thick biological samples and microchips. A precise understanding and mitigation of these constraints require detailed knowledge of beam emittance, aberrations in the STEM column optics, and energy-dependent elastic and inelastic critical angles of the materials being examined. This simulation study proposes a standardized experimental framework for comprehensively assessing beam intensity, divergence, and size at the sample exit.

View Article and Find Full Text PDF

To optimize electron energy for in situ imaging of large biological samples up to 10 μm in thickness with nanoscale resolutions, we implemented an analytical model based on elastic and inelastic characteristic angles. This model has been benchmarked by Monte Carlo simulations and can be used to predict the transverse beam size broadening as a function of electron energy while the probe beam traverses through the sample. As a result, the optimal choice of the electron beam energy can be realized.

View Article and Find Full Text PDF

Free-electron-laser-based beamlines utilize fully coherent laser pulses with extremely narrow bandwidth allowing direct use of X-rays without monochromators. This could be very beneficial for all users of current and future fourth-generation diffraction-limited synchrotron light sources (DL-SLSs) who need narrowband full-coherence high-brightness X-ray pulses. Based on our previous finding, i.

View Article and Find Full Text PDF

Having previously reported that separating the two stages of echo-enabled harmonic generation (EEHG) with one or more bending magnet (BM) sections allows the BMs to serve as the desired source of momentum compaction, here we demonstrate that this arrangement can greatly reduce the total energy modulation required by any 4th generation synchrotron light source, leading to higher repetition rates as well as stronger coherent radiation output power, with significant benefits. Since the EEHG beamline performance is mainly determined by the momentum compaction, beam emittances and beta functions of a storage ring lattice, allowing for different separations between the two stages is a straightforward way to increase the momentum compaction of chicane 1. This also enables pump-probe capabilities in a novel context, where twin-pulse seeding on the same electron bunch would allow two distinct radiation pulses with an adjustable delay in the range of 0.

View Article and Find Full Text PDF

Having previously reported on bunching via echo-enabled harmonic generation (EEHG) as an effective way to improve the longitudinal coherence in the NSLS-II storage ring [X. Yang et al., Sci.

View Article and Find Full Text PDF