Publications by authors named "V Slizen"

To evaluate the effect of adjunctive antiseptic irrigation of periodontal pockets on microbial and cytokine profiles. Fifty-nine patients with severe periodontitis were allocated to one of three groups for scaling and root planing facilitated with different adjunctive antiseptics: 1% polyhexamethyleneguanidine phosphate (PHMG-P) (n = 19), 0.2% chlorhexidine (CHX) (n = 21) or distilled water (n = 19).

View Article and Find Full Text PDF

Objective: To evaluate the efficacy of adjunctive polyhexamethylene guanidine (PHMG) phosphate irrigation in periodontal treatment.

Materials And Methods: The subjects comprised 59 patients with severe chronic periodontitis. Plaque index, bleeding on probing (BOP) and pocket probing depths (PPD) were recorded.

View Article and Find Full Text PDF

Objective: Polyhexamethylene guanidine phosphate (PHMG-P) was compared to chlorhexidine (CHX) in order to determine potential cytotoxic and immune-modulatory effects on human gingival fibroblasts.

Materials And Methods: Cytotoxic effects of PHMG-P and CHX on human gingival fibroblasts were assessed using cell viability assay at various time points and concentrations. The effects of PHMG-P and CHX on the secretion of prostaglandin (PG) E, interleukin (IL)-6, IL-8 and matrix metalloproteinase (MMP)-1 by non-stimulated or IL-1β stimulated fibroblasts were evaluated by enzyme-linked immunosorbent assays.

View Article and Find Full Text PDF

Background: Polyhexamethylene guanidine phosphate (PHMG-P) belongs to the polymeric guanidine family of biocides and contains a phosphate group, which may confer better solubility, a detoxifying effect and may change the kinetics and dynamics of PHMG-P interactions with microorganisms. Limited data regarding PHMG-P activity against periodontopathogenic and cariogenic microorganisms necessitates studies in this area. Aim is to evaluate polyhexamethylene guanidine phosphate antimicrobial activity in comparison to chlorhexidine.

View Article and Find Full Text PDF

Objective: This is the new comparative geogenetic molecular evolution research of M. tuberculosis in Iran and Belarus. Thus, we researched the genetic patterns of samples collected in the first survey of anti-tuberculosis drug-resistance by gene coding of RNA polymerase as part of the international project of on tuberculosis.

View Article and Find Full Text PDF