Publications by authors named "V Skopova"

De novo synthesis of purines (DNPS) is a biochemical pathway that provides the purine bases for synthesis of essential biomolecules such as nucleic acids, energy transfer molecules, signaling molecules and various cofactors. Inborn errors of DNPS enzymes present with a wide spectrum of neurodevelopmental and neuromuscular abnormalities and accumulation of characteristic metabolic intermediates of the DNPS in body fluids and tissues. In this study, we present the second case of PAICS deficiency due to bi-allelic variants of PAICS gene encoding for a missense p.

View Article and Find Full Text PDF

Objectives: To develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify 41 different purine and pyrimidine (PuPy) metabolites in human urine to allow detection of most known disorders in this metabolic pathway and to determine reference intervals.

Methods: Urine samples were diluted with an aqueous buffer to minimize ion suppression. For detection and quantification, liquid chromatography was combined with electrospray ionization, tandem mass spectrometry and multiple reaction monitoring.

View Article and Find Full Text PDF

Cytotoxicity of de novo purine synthesis (DNPS) metabolites is critical to the pathogenesis of three known and one putative autosomal recessive disorder affecting DNPS. These rare disorders are caused by biallelic mutations in the DNPS genes phosphoribosylformylglycineamidine synthase (PFAS), phosphoribosylaminoimidazolecarboxylase/phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS), adenylosuccinate lyase (ADSL), and aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) and are clinically characterized by developmental abnormalities, psychomotor retardation, and nonspecific neurological impairment. At a biochemical level, loss of function of specific mutated enzymes results in elevated levels of DNPS ribosides in body fluids.

View Article and Find Full Text PDF

Adenylosuccinate lyase (ADSL) functions in de novo purine synthesis (DNPS) and the purine nucleotide cycle. ADSL deficiency (ADSLD) causes numerous neurodevelopmental pathologies, including microcephaly and autism spectrum disorder. ADSLD patients have normal serum purine nucleotide levels but exhibit accumulation of dephosphorylated ADSL substrates, S-Ado, and SAICAr, the latter being implicated in neurotoxic effects through unknown mechanisms.

View Article and Find Full Text PDF

The cellular pool of purines is maintained by de novo purine synthesis (DNPS), recycling and degradation. Mutations in genes encoding DNPS enzymes cause their substrates to accumulate, which has detrimental effects on cellular division and organism development, potentially leading to neurological impairments. Unspecified neurological symptoms observed in many patients could not be elucidated even by modern techniques.

View Article and Find Full Text PDF