Publications by authors named "V Simonet"

The research field of magnetic frustration is dominated by triangle-based lattices but exotic phenomena can also be observed in pentagonal networks. A peculiar noncollinear magnetic order is indeed known to be stabilized in Bi_{2}Fe_{4}O_{9} materializing a Cairo pentagonal lattice. We present the spin wave excitations in the magnetically ordered state, obtained by inelastic neutron scattering.

View Article and Find Full Text PDF

Model materials are precious test cases for elementary theories and provide building blocks for the understanding of more complex cases. Here, we describe the lattice dynamics of the structural phase transition in francisite Cu_{3}Bi(SeO_{3})_{2}O_{2}Cl at 115 K and show that it provides a rare archetype of a transition driven by a soft antipolar phonon mode. In the high-symmetry phase at high temperatures, the soft mode is found at (0,0,0.

View Article and Find Full Text PDF

Combining inelastic neutron scattering and numerical simulations, we study the quasi-one-dimensional Ising anisotropic quantum antiferromagnet BaCo_{2}V_{2}O_{8} in a longitudinal magnetic field. This material shows a quantum phase transition from a Néel ordered phase at zero field to a longitudinal incommensurate spin density wave at a critical magnetic field of 3.8 T.

View Article and Find Full Text PDF

The magnetic properties and magnetic structure are presented for CoPS, a quasi-two-dimensional antiferromagnet on a honeycomb lattice with a Néel temperature of [Formula: see text] K. The compound is shown to have XY-like anisotropy in its susceptibility, and the anisotropy is analysed to extract crystal field parameters. For temperatures between 2 K and 300 K, no phase transitions were observed in the field-dependent magnetization up to 10 Tesla.

View Article and Find Full Text PDF

The characterization of the crystal structure, phase transitions, magnetic structure and dielectric properties has been carried out on [CH NH ][Co(COOH) ] (1) perovskite-like metal-organic compound through variable-temperature single-crystal and powder neutron and X-ray diffraction and relative permittivity measurements. The paraelectric to antiferroelectric-like phase transition observed at around 90 K is triggered by a structural phase transition; the structural studies show a change from Pnma space group at RT (1A) to P2 /n space group at low temperature (1B). This phase transition involves the occurrence of small distortions in the framework and counterions.

View Article and Find Full Text PDF