Publications by authors named "V Shvedov"

Optical metasurfaces present remarkable opportunities for manipulating wave propagation in unconventional ways, surpassing the capabilities of traditional optical devices. In this work, we introduce and demonstrate a multifunctional dynamic tuning of dielectric metasurfaces containing liquid crystals (LCs) through an effective three-dimensional (3D) control of the molecular orientation. We theoretically and experimentally study the spectral tuning of the electric and magnetic resonances of dielectric metasurfaces, which was enabled by rotating an external magnetic field in 3D.

View Article and Find Full Text PDF

We study the propagation dynamics of bright optical vortex solitons in nematic liquid crystals with a nonlocal reorientational nonlinear response. We investigate the role of optical birefringence on the stability of these solitons. In agreement with recent experimental observations, we show that the birefringence-induced astigmatism can eventually destabilize these vortex solitons.

View Article and Find Full Text PDF

Igniting and guiding electrical discharges to desired targets in the ambient atmosphere have been a subject of intense research efforts for decades. Ability to control discharge and its propagation can pave the way to a broad range of applications from nanofabrication and plasma medicine to monitoring of atmospheric pollution and, ultimately, taming lightning strikes. Numerous experiments utilizing powerful pulsed lasers with peak-intensity above air photoionization and photo-dissociation have demonstrated excitation and confinement of plasma tracks in the wakes of laser field.

View Article and Find Full Text PDF

We study experimentally the interaction of mutually incoherent bright spatial solitons in dye-doped nematic liquid crystals (LCs). The dye-induced light absorption results in a complex nonlinear optical response of the LC having spatially nonlocal focusing and defocusing contributions. The competition between both nonlinearities leads to the separation-dependent soliton interaction with repulsion of distant and attraction of closely placed solitons.

View Article and Find Full Text PDF

We study nonlinear propagation of light in colloidal suspension of metallic nanoparticles, in the regime of particles surface plasmon resonance. We show that the propagation exhibits features typical for purely defocusing media and the observed spatial confinement is not a real self-trapping, as for solitons, but rather than is caused by the phase modulation of the beam via nonlocal defocusing nonlinearity. We also show that the light-induced refractive index change in the suspension leads to stabilization of structured light beams.

View Article and Find Full Text PDF