The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of HS and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics.
View Article and Find Full Text PDFNanogold is an emerging material for enhancing surface-enhanced Raman scattering (SERS), which enables the detection of hazardous analytes at trace levels. This study presents a simple, single-step plasma synthesis method to control the size and yield of Au nanoparticles by using plasma-liquid redox chemistry. The pin-based argon plasma reduces the Au precursor in under 5 min, synthesizing Au spherical particles ranging from ∼20 nm at 0.
View Article and Find Full Text PDFThe use of reusable flexible endoscopes has increased dramatically over the past decade, however despite improvements in endoscope reprocessing, the continued emergence of endoscopy-associated outbreaks as a result of multi-drug resistant bacteria has highlighted the need for a new approach to disinfection. Here, the use of plasma activated liquids (PALs) for the elimination of mixed species biofilm contamination within the working channels of endoscopes was evaluated. Cold atmospheric pressure plasma was used to chemically activate water and a commercially available pH buffered peracetic acid to create PALs.
View Article and Find Full Text PDFCellulose nanofibrils are one of the keystone materials for sustainable future, yet their poor water repellency hinders their push into industrial applications. Due to complexity and poor economical outcome and/or processing toxicity of the existing hydrophobization methods, nanocellulose loses against its antagonist plastic in medical and food industries. Herein, we demonstrate for the first time the "one-side selective water-repellency activation" in nanocellulose membranes by the means of mild N-plasma treatment, exhibiting lowest wettability after 20 s of treatment.
View Article and Find Full Text PDFAirborne allergens, especially those originating from various types of pollen, significantly compromise the health and well-being of individuals on a global scale. Here, cold atmospheric pressure plasma (CAP) created in ambient air was used to treat highly allergenic and invasive Ambrosia artemisiifolia pollen. Immunoassays were used to evaluate the impact of CAP on the principal A.
View Article and Find Full Text PDF