Publications by authors named "V Shevtsova"

We present mass transport properties of C fullerene in five aromatic solvents, methylnaphthalene, toluene and three xylene isomers. Optical beam deflection and thermogravitational column techniques were used to determine molecular diffusion, thermodiffusion and Soret coefficients. All thermo-optical properties necessary to determine the abovementioned coefficients are also given at a mean working temperature of 298.

View Article and Find Full Text PDF

Mutual diffusion of six hydrocarbons (methane, ethane, isobutane, benzene, toluene or naphthalene) diluted in supercritical carbon dioxide ([Formula: see text]) is studied by molecular dynamics simulation near the Widom line, i.e., in the temperature range from 290 to 345 K along the isobar 9 MPa.

View Article and Find Full Text PDF

In a ternary mixture with the Soret effect, the interplay between cross-diffusion, thermodiffusion, and convection can lead to rich and complex dynamics including spatial patterns and oscillations. We present an experimental and three-dimensional numerical study of dynamic regimes in the toluene-methanol-cyclohexane ternary mixture with the Soret effect in the geometry of a thermogravitational column. An important feature of the system is that for the first component, toluene, the Soret and thermodiffusion coefficients have opposite signs, which triggers the oscillatory instability.

View Article and Find Full Text PDF

We report on accurate measurements of Fickian diffusion coefficients in binary mixtures consisting of hydrofluoroether (a perfluoro compound of methoxy-nonafluorobutane or HFE-7100) with dissolved atmospheric gases CO, N, and O in the limit of an infinite dilution of the gas. We show that the use of optical digital interferometry (ODI) allows the determination of diffusion coefficients of dissolved gases with relatively small standard uncertainties for this class of experiments. In addition, we illustrate the ability of an optical approach to determine the gas concentration.

View Article and Find Full Text PDF

We present an experimental and two-phase computational study of convection in a liquid bridge ([Formula: see text]) that develops under the action of a parallel gas flow. The study focuses on tracking the evolution of hydrothermal waves by increasing the applied temperature difference [Formula: see text] and the temperature of gas moving at the velocity [Formula: see text]. Our experiments revealed certain regularity in the change of oscillatory states with an increase in the control parameters.

View Article and Find Full Text PDF