Previously, we reported global hypermethylation in DS might be attributed to the overexpression of HSA21 gene DNMT3L, which can enhance DNMT3A and DNMT3B activities in DNA methylation. To test this hypothesis, we compared the DNA methylation and RNA expression profiles of early-differentiated human neuroprogenitors with and without DNMT3L overexpression. We found DNMT3L overexpression only moderately increased the DNA methylation of limited genes, yet significantly altered global RNA expression of genes involved in neural differentiation.
View Article and Find Full Text PDFAlthough neural progenitor proliferation along the ventricular zone is regulated by β-catenin through Wnt signaling, the cytoskeletal mechanisms that regulate expression and localization of these proteins are not well understood. Our prior studies have shown that loss of the actin-binding Filamin A (FlnA) and actin-nucleating protein Formin 2 (Fmn2) impairs endocytosis of low-density-lipoprotein-receptor-related protein 6 (Lrp6), thereby disrupting β-catenin activation, resulting in decreased brain size. Here, we report that activated RhoA-GTPase disengages Fmn2 N- to C-terminal binding to promote Fmn2 activation and redistribution into lysosomal vesicles.
View Article and Find Full Text PDFNeural progenitor proliferation and cell fate decision from self-renewal to differentiation are crucial factors in determining brain size and morphology. The cytoskeletal dependent regulation of these processes is not entirely known. The actin-binding filamin A (FlnA) was shown to regulate proliferation of progenitors by directing changes in cell cycles proteins such as Cdk1 during G2/M phase.
View Article and Find Full Text PDFThe effects of actin dependent molecular mechanisms in coordinating cellular proliferation, migration and differentiation during embryogenesis are not well-understood. We have previously shown that actin-binding Filamin A (FlnA) and actin-nucleating Formin 2 (Fmn2) influence the development of the brain causing microcephaly in mice. In this study, we broaden this phenotype to explore the effects of these two proteins in the development of extra-CNS organ systems, including the gut, muscle, and skeleton.
View Article and Find Full Text PDFBackground: Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology.
New Method: To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia.