Background: The wide variability in clinical responses to anti-tumor immunotherapy drives the search for personalized strategies. One of the promising approaches is drug screening using patient-derived models composed of tumor and immune cells. In this regard, the selection of an appropriate in vitro model and the choice of cellular response assay are critical for reliable predictions.
View Article and Find Full Text PDFSignificance: Autofluorescence characteristics of the reduced nicotinamide adenine dinucleotide and oxidized flavin cofactors are important for the evaluation of the metabolic status of the cells. The approaches that involve a detailed analysis of both spectral and time characteristics of the autofluorescence signals may provide additional insights into the biochemical processes in the cells and biological tissues and facilitate the transition of spectral fluorescence lifetime imaging into clinical applications.
Aim: We present the experiments on multispectral fluorescence lifetime imaging with a detailed analysis of the fluorescence decays and spectral profiles of the reduced nicotinamide adenine dinucleotide and oxidized flavin under a single excitation wavelength aimed at understanding whether the use of multispectral detection is helpful for metabolic imaging of cancer cells.
Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients' tumor samples.
View Article and Find Full Text PDFAdvancements in optical imaging techniques have revolutionized the field of biomedical research, allowing for the comprehensive characterization of tissues and their underlying biological processes. Yet, there is still a lack of tools to provide quantitative and objective characterization of tissues that can aid clinical assessment in vivo to enhance diagnostic and therapeutic interventions. Here, we present a clinically viable fiber-based imaging system combining time-resolved spectrofluorimetry and reflectance spectroscopy to achieve fast multiparametric macroscopic characterization of tissues.
View Article and Find Full Text PDF