Antimony tin oxide (SbO/SnO) is effective in the absorption of infrared radiation for applications, such as skylights. As a nanoparticle (NP), it can be incorporated into films or sheets providing infrared radiation attenuation while allowing for a transparent final product. The acute toxicity exerted by commercial SbO/SnO (ATO) NPs was studied in adults and embryos of zebrafish ().
View Article and Find Full Text PDFThe A15 β phase of tungsten has recently attracted great interest for spintronic applications due to the finding of giant spin-Hall effect. As β phase is stabilized by oxygen, we have studied the electronic structure of O-doped β-W from first principles calculations. It is found that 20 at.
View Article and Find Full Text PDFThin films of β-W are the most interesting for manipulating magnetic moments using spin-orbit torques, and a clear understanding of α to β phase transition in W by doping impurity, especially oxygen, is needed. Here we present a combined experimental and theoretical study using grazing incidence X-ray diffraction, photoelectron spectroscopy, electron microscopy, and ab initio calculations to explore atomic structure, bonding, and oxygen content for understanding the formation of β-W. It is found that the W films on SiO/Si have 13-22 at.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
July 2019
An alternative process for opening and filling single-wall carbon nanotubes (SWCNTs) based on UV photolysis is proposed. The filling of SWCNTs with MoCl and iodine were successfully achieved at room temperature after subjecting SWCNTs with MoCl or I₂ dissolved in chloroform to UV light for 6 hours. Transmission electron microscopy (TEM) and Electron Energy Loss Spectroscopy (EELS) were used to characterise both the encapsulated materials and the host tube.
View Article and Find Full Text PDFMost studies on MnAs material in its bulk form have been focused on its temperature-dependent structural phase transition accompanied by a magnetic one. Magnetostructural phase transition parameters in thin MnAs films grown on substrates present however some differences from the bulk behavior, and local studies become mandatory for a deeper understanding of the mechanisms involved within the transition. Up to now, only surface techniques have been carried out, while the transition is a three-dimensional phenomenon.
View Article and Find Full Text PDF