A new growth method to make highly oriented GaAs thin films on flexible metal substrates has been developed, enabling roll-to-roll manufacturing of flexible semiconductor devices. The grains are oriented in the <001> direction with <1° misorientations between them, and they have a comparable mobility to single-crystalline GaAs at high doping concentrations. At the moment, the role of low-angle grain boundaries (LAGBs) on device performance is unknown.
View Article and Find Full Text PDFAn Advanced MOCVD (A-MOCVD) reactor was used to deposit 4.8 µm thick (Gd,Y)BaCuO tapes with 15 mol% Zr addition in a single pass. A record-high critical current density (J ) of 15.
View Article and Find Full Text PDFA main challenge that significantly impedes REBaCuO (RE = rare earth) coated conductor applications is the low engineering critical current density J because of the low superconductor fill factor in a complicated layered structure that is crucial for REBaCuO to carry supercurrent. Recently, we have successfully achieved engineering critical current density beyond 2.0 kA/mm at 4.
View Article and Find Full Text PDFSingle-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm/V·s and saturation current, I/l > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs.
View Article and Find Full Text PDFA new critical-current-by-design paradigm is presented. It aims at predicting the optimal defect landscape in superconductors for targeted applications by elucidating the vortex dynamics responsible for the bulk critical current. To this end, critical current measurements on commercial high-temperature superconductors are combined with large-scale time-dependent Ginzburg-Landau simulations of vortex dynamics.
View Article and Find Full Text PDF