We demonstrate that the physics of the F model can be approached very closely in a two-dimensional artificial magnetic system. Faraday lines spanning across the lattice and carrying a net polarization, together with chiral Faraday loops characterized by a zero magnetic susceptibility, are imaged in real space using magnetic force microscopy. Our measurements reveal the proliferation of Faraday lines and Faraday loops as the system is brought from low- to high-energy magnetic configurations.
View Article and Find Full Text PDFMetamaterials present the possibility of artificially generating advanced functionalities through engineering of their internal structure. Artificial spin networks, in which a large number of nanoscale magnetic elements are coupled together, are promising metamaterial candidates that enable the control of collective magnetic behavior through tuning of the local interaction between elements. In this work, the motion of magnetic domain-walls in an artificial spin network leads to a tunable stochastic response of the metamaterial, which can be tailored through an external magnetic field and local lattice modifications.
View Article and Find Full Text PDFSpin liquids are correlated, disordered states of matter that fluctuate even at low temperatures. Experimentally, the extensive degeneracy characterizing their low-energy manifold is expected to be lifted, for example, because of dipolar interactions, leading to an ordered ground state at absolute zero. However, this is not what is usually observed, and many systems, whether they are chemically synthesized or nanofabricated, dynamically freeze before magnetic ordering sets in.
View Article and Find Full Text PDFX-ray photoemission electron microscopy, one of the most successful imaging tools at synchrotrons, is known to have limitations related to the application of external fields and to the short electron mean free path. In order to overcome such issues, we adapt an existing XPEEM instrument to simultaneously perform coherent x-ray scattering measurements in reflectivity mode, thus adding a complementary method to XPEEM. Photon-in photon-out x-ray scattering provides the sensitivity to buried interfaces as well as the possibility to work under external fields, which is challenging when using charged particles for imaging.
View Article and Find Full Text PDF