GDF15, a hormone acting on the brainstem, has been implicated in the nausea and vomiting of pregnancy, including its most severe form, hyperemesis gravidarum (HG), but a full mechanistic understanding is lacking. Here we report that fetal production of GDF15 and maternal sensitivity to it both contribute substantially to the risk of HG. We confirmed that higher GDF15 levels in maternal blood are associated with vomiting in pregnancy and HG.
View Article and Find Full Text PDFHuman pregnancy is frequently accompanied by nausea and vomiting that may become severe and life-threatening, as in hyperemesis gravidarum (HG), the cause of which is unknown. Growth Differentiation Factor-15 (GDF15), a hormone known to act on the hindbrain to cause emesis, is highly expressed in the placenta and its levels in maternal blood rise rapidly in pregnancy. Variants in the maternal gene are associated with HG.
View Article and Find Full Text PDFContext: Biological and translational insights from large-scale, array-based genetic studies of fat distribution, a key determinant of metabolic health, have been limited by the difficulty in linking predominantly noncoding variants to specific gene targets. Rare coding variant analyses provide greater confidence that a specific gene is involved, but do not necessarily indicate whether gain or loss of function (LoF) would be of most therapeutic benefit.
Objective: This work aimed to identify genes/proteins involved in determining fat distribution.
Neuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat mice that carry a paternal null allele and do not express Nnat.
View Article and Find Full Text PDF