Intergenerational and intragenerational approaches to climate change take into account the actions taken by the current generation to maintain or improve the climate, which is advantageous to both the present and future generations. Climate-friendly initiatives primarily benefit future generations, with current generations receiving lesser benefits. Self-interest can hinder the management of shared resources, as seen in the "tragedy of the commons" concept, where individuals benefit from defecting, but society bears the consequences of it.
View Article and Find Full Text PDF"Candidatus Achromatium palustre" was recently described as the first marine representative of the Achromatium spp. in the Thiotrichaceae - a sister lineage to the Chromatiaceae in the Gammaproteobacteria. Achromatium spp.
View Article and Find Full Text PDFLarge sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day.
View Article and Find Full Text PDFMicrobial metabolism is the engine that drives global biogeochemical cycles, yet many key transformations are carried out by microbial consortia over short spatiotemporal scales that elude detection by traditional analytical approaches. We investigate syntrophic sulfur cycling in the 'pink berry' consortia of the Sippewissett Salt Marsh through an integrative study at the microbial scale. The pink berries are macroscopic, photosynthetic microbial aggregates composed primarily of two closely associated species: sulfide-oxidizing purple sulfur bacteria (PB-PSB1) and sulfate-reducing bacteria (PB-SRB1).
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
August 2013
The large sulphur bacteria, first discovered in the early nineteenth century, include some of the largest bacteria identified to date. Individual cells are often visible to the unaided eye and can reach 750 μm in diameter. The cells usually feature light-refracting inclusions of elemental sulphur and a large internal aqueous vacuole, which restricts the cytoplasm to the outermost periphery.
View Article and Find Full Text PDF