Publications by authors named "V Sajith"

The broader soil bacterial community responses at ecotoxicologically relevant levels of nano ZnO (nZnO) focussing on co-selection of antibiotic resistance (AR) were investigated. nZnO imposed a stronger influence than the bulk counterpart (bZnO) on antibiotic resistance genes (ARGs) with multidrug resistance (MDR) systems being predominant (63 % of total ARGs). Proliferation of biomarker ARGs especially for last resort antibiotic like vancomycin was observed and Streptomyces hosted multiple ARGs.

View Article and Find Full Text PDF

Alveolar ridge resorption following tooth extraction poses significant challenges for future dental restorations. This study investigated the efficacy of fish scale-derived hydroxyapatite (FSHA) as a socket preservation graft material to maintain alveolar bone volume and architecture. FSHA was extracted from *Labeo rohita* fish scales and characterized using Fourier transform infrared (FTIR) analysis.

View Article and Find Full Text PDF

Due to relentless production and disposal of nano zinc oxide (nZnO), it has become critical to comprehend the serious risks large-scale accumulation of nZnO pose to bacterial communities in soil. The primary objective was to evaluate the changes in bacterial community structure and associated functional pathways through predictive metagenomic profiling and subsequent validation through Quantitative Realtime PCR in soil spiked with nZnO (0, 50, 200, 500 and 1000 mg Zn kg) and similar levels of bulk ZnO (bZnO). The results revealed that soil microbial biomass-C, -N, -P, soil respiration and enzyme activities decreased markedly at higher ZnO levels.

View Article and Find Full Text PDF

The unsafe and reckless disposal of metal oxide nanoparticles like ZnO (nZnO) into the soil could seriously impact bacterial behavioural responses and functions. Under such stress, biofilm formation is considered to be a robust mechanism for bacterial survival in soil. We examined the response of bacterial metagenomes in soils exposed to varying levels of Zn (50, 200, 500 and 1000 mg kg) as nano Zn oxide (nZnO) in terms of biofilm genesis and regulation and their co-occurrences with multidrug resistance genes (MDRGs) and mobile genetic elements (MGEs).

View Article and Find Full Text PDF