Nucleoside ions that were furnished on ribose with a 2'--acetyl radical group were generated in the gas phase by multistep collision-induced dissociation of precursor ions tagged with radical initiator groups, and their chemistry was investigated in the gas phase. 2'--Acetyladenosine cation radicals were found to undergo hydrogen transfer to the acetoxyl radical from the ribose ring positions that were elucidated using specific deuterium labeling of 1'-H, 2'-H, and 4'-H and in the N-H and O-H exchangeable positions, favoring 4'-H transfer. Ion structures and transition-state energies were calculated by a combination of Born-Oppenheimer molecular dynamics and density functional theory and used to obtain unimolecular rate constants for competitive hydrogen transfer and loss of the acetoxyl radical.
View Article and Find Full Text PDFWe report a combined experimental and computational study of adenosine cation radicals that were protonated at adenine and furnished with a radical handle in the form of an acetoxyl radical, CHCOO, that was attached to ribose 5'-O. Radicals were generated by collision-induced dissociation (CID) and characterized by tandem mass spectrometry and UV-vis photodissociation action spectroscopy. The acetoxyl radical was used to probe the kinetics of intramolecular hydrogen transfer from the ribose ring positions that were specifically labeled with deuterium at C1', C2', C3', C4', C5', and in the exchangeable hydroxyl groups.
View Article and Find Full Text PDFObjective: To identify the relationship between serum CRP/albumin and bronchial suture failure after pneumonectomy.
Material And Methods: A retrospective analysis included 100 patients who underwent pneumonectomy with extended lymph node dissection for lung cancer. Patients were divided into 2 groups depending on postoperative complications: group 1 - bronchial stump failure, group 2 - no similar complications.
We report experimental and computational studies of protonated adenine C-8 σ-radicals that are presumed yet elusive reactive intermediates of oxidative damage to nucleic acids. The radicals were generated in the gas phase by the collision-induced dissociation of C-8-Br and C-8-I bonds in protonated 8-bromo- and 8-iodoadenine as well as by 8-bromo- and 8-iodo-9-methyladenine. Protonation by electrospray of 8-bromo- and 8-iodoadenine was shown by cyclic-ion mobility mass spectrometry (c-IMS) to form the N-1-H, N-9-H and N-3-H, N-7-H protomers in 85:15 and 81:19 ratios, respectively, in accordance with the equilibrium populations of these protomers in water-solvated ions that were calculated by density functional theory (DFT).
View Article and Find Full Text PDFScaffolds consisting of a peptide, a phthalate linker, and a 4,4-azipentyl group were synthesized and used to study intramolecular peptide-carbene cross-linking in gas-phase cations. Carbene intermediates were generated by UV-laser photodissociation at 355 nm of the diazirine ring in mass-selected ions, and the cross-linked products were detected and quantified by collision-induced dissociation tandem mass spectrometry (CID-MS, = 3-5). Peptide scaffolds containing Ala and Leu residues with a C-terminal Gly gave 21-26% yields of cross-linked products, while the presence of the Pro and His residues decreased the yields.
View Article and Find Full Text PDF