Entropy (Basel)
October 2022
We address minimization of information leakage from continuous-variable quantum channels. It is known, that regime of minimum leakage can be accessible for the modulated signal states with variance equivalent to a shot noise, i.e.
View Article and Find Full Text PDFTwo-mode squeezed states are scalable and robust entanglement resources for continuous-variable and hybrid quantum information protocols that are realized at a distance. We consider the effect of a linear cross talk in the multimode distribution of two-mode squeezed states propagating through parallel similar channels. First, to reduce degradation of the distributed Gaussian entanglement, we show that the initial two-mode squeezing entering the channel should be optimized already in the presence of a small cross talk.
View Article and Find Full Text PDFWe address the applicability of quantum key distribution with continuous-variable coherent and squeezed states over long-distance satellite-based links, considering low Earth orbits and taking into account strong varying channel attenuation, atmospheric turbulence and finite data ensemble size effects. We obtain tight security bounds on the untrusted excess noise on the channel output, which suggest that substantial efforts aimed at setup stabilization and reduction of noise and loss are required, or the protocols can be realistically implemented over satellite links once either individual or passive collective attacks are assumed. Furthermore, splitting the satellite pass into discrete segments and extracting the key from each rather than from the overall single pass allows one to effectively improve robustness against the untrusted channel noise and establish a secure key under active collective attacks.
View Article and Find Full Text PDFTransmittance fluctuations in turbulent atmospheric channels result in quadrature excess noise which limits applicability of continuous-variable quantum communication. Such fluctuations are commonly caused by beam wandering around the receiving aperture. We study the possibility to stabilize the fluctuations by expanding the beam, and test this channel stabilization in regard of continuous-variable entanglement sharing and quantum key distribution.
View Article and Find Full Text PDF