A photonic crystal microcavity with the liquid crystal resonant layer tunable by heating has been implemented. The multiple vanishing resonant lines corresponding to optical bound states in the continuum are observed. The abrupt change in the resonant linewidth near the vanishing point can be used for temperature sensing.
View Article and Find Full Text PDFThe microcavity in the form of a liquid crystal defect layer embedded in a one-dimensional photonic crystal is considered. The microcavity mode has a tunable radiation decay rate in the vicinity of a bound state in the continuum. It is demonstrated that coupling between the microcavity mode and a Tamm plasmon polariton results in hybrid Tamm-microcavity modes with a tunable factor.
View Article and Find Full Text PDFA photonic crystal microcavity with a tunable quality factor (Q factor) has been implemented on the basis of a bound state in the continuum using the advanced liquid crystal cell technology platform. It has been shown that the Q factor of the microcavity changes from 100 to 360 in the voltage range of 0.6 V.
View Article and Find Full Text PDFA method for electrically controlled synchronous mode tuning in the transmittance and reflectance spectra of a photonic structure consisting of an asymmetric dielectric Fabry-Pérot microcavity and an ultrathin metallic film has been proposed. The excitation of a broadband Tamm plasmon polariton at a metal/Bragg mirror interface is accompanied by the two phenomena opposing one another. Due to the strong absorption induced by the metal, a sufficient rejection level in the reflection of the off-resonant radiation has been obtained in a wide spectral range, which almost coincides with the photonic band gap, while at the cavity mode frequencies the structure becomes transparent for the reflected radiation.
View Article and Find Full Text PDFA liquid crystal cell is used to produce correlated light beams with speckle structures for implementation of pseudo-thermal ghost imaging. The liquid crystal cell makes it possible to provide random spatial intensity distributions, which are characterized by a low coefficient of mutual cross correlations. Ghost imaging of an object representing an amplitude mask is demonstrated.
View Article and Find Full Text PDF