Broadband blue emission in zero-dimensional perovskites has received considerable attention, which is very important for the realization of stable blue-light emitters; however, the underlying formation mechanism remains unclear. Based on first-principles calculations, we have systematically studied the self-trapped excitons (STEs) behavior and luminescence properties in 0D-(DMA)4PbI6 perovskite. Our calculations show that there is a significant difference between the intrinsic STE luminescence mechanism (∼2.
View Article and Find Full Text PDFSuperconducting hybrid structures based on single nanowires are a new type of nanoscale devices with peculiar transport characteristics. Control over the nanowire structure is essential for understanding hybrid electronic phenomena arising in such complex systems. In this work, we report a technique for the fabrication of cobalt nanowires by template-assisted electrodeposition usingcompensation, which allows revealing the fundamental dependence of the preferred direction of nanowire growth on the deposition potential.
View Article and Find Full Text PDFPhotonic crystals (PCs) consisting of a periodic arrangement of holes in dielectric media have found success in light manipulation and sensing. Among them, three-dimensional (3D) PCs are in high demand due to their unique properties originating from multiple photonic band gaps (PBGs) and even full ones. Here, 3D PCs based on porous anodic aluminum oxide (AAO) were fabricated for the first time.
View Article and Find Full Text PDFTo describe the way complexity emerges in seemingly simple systems of nature, requires one to attend to two principal questions: how complex patterns appear spontaneously and why a single system can accommodate their inexhaustible variety. It is commonly assumed the pattern formation phenomenon is related to the competition of several types of interactions with disparate length scales. These multi-scale interactions also lead to frustration within the system, resulting in the existence of a manifold of configurations-patterns with qualitatively distinct morphologies.
View Article and Find Full Text PDFUltrathin 2D ferroelectrics with high Curie temperature are critical for multifunctional ferroelectric devices. However, the ferroelectric spontaneous polarization is consistently broken by the strong thermal fluctuations at high temperature, resulting in the rare discovery of high-temperature ferroelectricity in 2D materials. Here, a chemical vapor deposition method is reported to synthesize 2D CuCrSe nanosheets.
View Article and Find Full Text PDF