Publications by authors named "V S Periasamy"

We report for the first time the successful acquisition of electrochemical impedance spectroscopy data using an unconventional same-metal PCB-based three-electrode system. Conventional three-electrode systems primarily require expensive and bulky electrodes, and a high volume of analytes to conduct electrochemical impedance spectroscopy studies. The miniaturized PCB-based three-electrode system used in this work requires only trace amounts of analytes in the order of 10-20 μL owing to the design of the electrode sensor.

View Article and Find Full Text PDF

Riboflavin or vitamin B2 plays significant roles in metabolic reactions and energy production, establishing it as an important research subject in biology and medicine. While there are numerous riboflavin-related publications in these fields, interrogation of its electronic properties in relation to the physiological function at the cellular level remains obscure due to technological challenges. However, progress in molecular electronics and the discovery of the semiconductor-like behaviour of biomolecules in recent times have initiated growing interest in exploring the electronic properties of these materials for potential bioelectronic device applications.

View Article and Find Full Text PDF

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated.

View Article and Find Full Text PDF

High-temperature cooking approaches trigger many metabolically undesirable molecule formations, which pose health risks. As a result, nanomaterial formation has been observed while cooking and reported recently. At high temperatures, starch and myristic acid interact and lead to the creation of nanomaterials (cMS-NMs).

View Article and Find Full Text PDF

Nanostructures have been used for various biomedical applications due to their optical, antibacterial, magnetic, antioxidant, and biocompatible properties. Cancer is a prevalent disease that severely threatens human life and health. Thus, innovative and effective therapeutic approaches are urgently required for cancer.

View Article and Find Full Text PDF