Publications by authors named "V S Muthusamy"

Waxy maize is highly preferred diet in developing countries due to its high amylopectin content. Enriching amylopectin in biofortified maize meets food security and fulfils the demand of rising industrial applications, especially bioethanol. The mutant waxy1 (wx1) gene is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications.

View Article and Find Full Text PDF

Traditional maize possesses low concentrations of provitamin-A and vitamin-E, leading to various health concerns. Mutant alleles of and that enhance β-carotene (provitamin-A) and α-tocopherol (vitamin-E), respectively, in maize kernels have been explored in several biofortification programs. For genetic improvement of these target nutrients, uniplex-PCR assays are routinely used in marker-assisted selection.

View Article and Find Full Text PDF

Beyond storage capacity, long-term grain storage faces significant challenges due to the activity of lipoxygenases (LOXs). These enzymes catalyze the production of volatiles from free fatty acids, leading to stale odors and off-flavors. These changes degrade the quality of stored grains, even under regulated conditions, affecting the profitability of stored products to the farmers and the assurance of high-quality food for consumers.

View Article and Find Full Text PDF

Background: The role of the silkless1 (sk1) gene in developing silkless baby corn, a distinctive trait in maize has been investigated. So far, no sk1 gene-specific marker has been available for accelerated development of silkless baby corn hybrids.

Methods & Results: We developed sk1 gene-based markers and validated them in backcross (BC) and F segregating generations, revealing a polymorphic marker corresponding to a silkless phenotype.

View Article and Find Full Text PDF

Adzuki bean, an underutilized grain legume, has a significant potential for enhancing food and nutritional security. The main obstacles to developing new cultivars and promoting the adzuki bean as a mainstream pulse crop are a lack of awareness about its potential and insufficient information on crop its genetic diversity. Here, we aimed to explore the untapped potential of adzuki bean germplasm by evaluating its agro-morphological traits and diversity at the molecular level and also to identify trait-specific germplasm by utilizing 100 adzuki bean accessions conserved in the Indian National Genebank.

View Article and Find Full Text PDF