Publications by authors named "V S Malinin"

Article Synopsis
  • The study aimed to identify the enzymes that convert treprostinil palmitil (TP) into treprostinil and where this conversion occurs in the lungs.
  • Researchers used in vitro activity assays to find lung enzymes capable of hydrolyzing TP and employed cell-based assays to pinpoint their locations.
  • The findings suggested that lipoprotein lipase (LPL) is the main enzyme responsible for this conversion, and the conversion rate is limited more by how accessible TP is rather than by the enzyme's activity level.
View Article and Find Full Text PDF

The increased prevalence of pulmonary methicillin-resistant (MRSA) infection in patients living with cystic fibrosis (CF) is concerning due to a correlation with reduced life expectancy and lack of available treatment options. RV94 is a next generation lipoglycopeptide designed for pulmonary delivery that preclinically demonstrated high potency against MRSA in planktonic and protected colonies and improved pulmonary clearance relative to same class molecules. Here, RV94 was formulated into a dry powder for inhalation (DPI) to investigate the localized treatment of pulmonary MRSA presented in a potentially more convenient dosage form.

View Article and Find Full Text PDF

Treprostinil palmitil (TP), a prodrug of treprostinil, is being developed as an inhalation powder (TPIP) for the treatment of patients with pulmonary arterial hypertension (PAH) and pulmonary hypertension due to interstitial lung disease (PH-ILD). In ongoing human clinical trials, TPIP is administered via a commercially available high resistance (HR) RS01 capsule-based dry powder inhaler (DPI) device manufactured by Berry Global (formerly Plastiape), which utilizes the patient's inspiratory flow to provide the required energy to deagglomerate and disperse the powder for delivery to their lungs. In this study, we characterized the aerosol performance of TPIP in response to changes in inhalation profiles to model more realistic use scenarios, i.

View Article and Find Full Text PDF

Treprostinil palmitil (TP), a long-acting inhaled pulmonary vasodilator prodrug of treprostinil (TRE), has beneficial effects in a Sugen5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) that compare favorably to the oral phosphodiesterase 5 inhibitor (PDE) sildenafil. In this study in male Sprague-Dawley rats, a dry powder formulation of TP (TPIP) was compared with inhaled and intravenous TRE and oral selexipag to evaluate inhibition of hemodynamic and pathologic changes in the lungs and heart induced by Su/Hx challenge. Su (20 mg/kg) was injected subcutaneously followed by 3 weeks of Hx (10% O/balance N) and then initiation of test article administration over 5 weeks with room air breathing.

View Article and Find Full Text PDF