Publications by authors named "V S Fonov"

Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells.

View Article and Find Full Text PDF

Nucleus Basalis of Meynert (NbM), a crucial source of cholinergic projection to the entorhinal cortex (EC) and hippocampus (HC), has shown sensitivity to neurofibrillary degeneration in the early stages of Alzheimer's Disease. Using deformation-based morphometry (DBM) on up-sampled MRI scans from 1447 Alzheimer's Disease Neuroimaging Initiative participants, we aimed to quantify NbM degeneration along the disease trajectory. Results from cross-sectional analysis revealed significant differences of NbM volume between cognitively normal and early mild cognitive impairment cohorts, confirming recent studies suggesting that NbM degeneration happens before degeneration in the EC or HC.

View Article and Find Full Text PDF

Recent studies have shown that white-gray contrast (WGC) of either cortical or subcortical gray matter provides for accurate predictions of age in typically developing (TD) children, and that, at least for the cortex, it changes differently with age in subjects with autism spectrum disorder (ASD) compared to their TD peers. Our previous study showed different patterns of contrast change between ASD and TD in sensorimotor and association cortices. While that study was confined to the cortex, we hypothesized that subcortical structures, particularly the thalamus, were involved in the observed cortical dichotomy between lower and higher processing.

View Article and Find Full Text PDF

Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in and determine that variant type is correlated with disease severity.

View Article and Find Full Text PDF

Blood-flow artifacts present a serious challenge for most, if not all, volumetric analytical approaches. We utilize T1-weighted data with prominent blood-flow artifacts from the Autism Brain Imaging Data Exchange (ABIDE) multisite agglomerative dataset to assess the impact that such blood-flow artifacts have on registration of T1-weighted data to a template. We use a heuristic approach to identify the blood-flow artifacts in these data; we use the resulting blood masks to turn the underlying voxels to the intensity of the cerebro-spinal fluid, thus mimicking the effect of blood suppression.

View Article and Find Full Text PDF