Publications by authors named "V S Dravid"

In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.

View Article and Find Full Text PDF

This perspective highlights the transformative potential of Metal-Organic Frameworks (MOFs) in environmental and healthcare sectors. It discusses work that has advanced beyond technology readiness levels of >4 including applications in capture, storage, and conversion of gases to value added products. This work showcases efforts in the most salient applications of MOFs which have been performed at a great cadence, enabled by the federal government, large companies, and startups to commercialize these technologies despite facing significant challenges.

View Article and Find Full Text PDF

Electrochemical CO reduction reaction (CO-RR) in non-aqueous electrolytes offers significant advantages over aqueous systems, as it boosts CO solubility and limits the formation of HCO and CO anions. Metal-organic frameworks (MOFs) in non-aqueous CO-RR makes an attractive system for CO capture and conversion. However, the predominantly organic composition of MOFs limits their electrical conductivity and stability in electrocatalysis, where they suffer from electrolytic decomposition.

View Article and Find Full Text PDF

The high carbon intensity of present-day ethylene glycol (EG) production motivates interest in electrifying ethylene oxidation. Noting poor kinetics in prior reports of the organic electrooxidation of small hydrocarbons, we explored the design of mediators that activate and simultaneously stabilize light alkenes. A ruthenium-substituted polyoxometalate (Ru-POM, {Si[Ru(HO)WO]}) achieves 82% faradaic efficiency in EG production at 100 mA/cm under ambient conditions.

View Article and Find Full Text PDF

Graphite is a commonly used raw material across many industries and the demand for high-quality graphite has been increasing in recent years, especially as a primary component for lithium-ion batteries. However, graphite production is currently limited by production shortages, uneven geographical distribution, and significant environmental impacts incurred from conventional processing. Here, an efficient method of synthesizing biomass-derived graphite from biochar is presented as a sustainable alternative to natural and synthetic graphite.

View Article and Find Full Text PDF