Publications by authors named "V S Deshpande"

Background Context: Lumbar interbody fusion (LIF) is a common surgical intervention for treating lumbar degenerative disorders. Increasing demand has contributed to ever-increasing healthcare expenditure and economic burden. To address this, cost-utility analyses (CUAs) compare value in the context of patient outcomes.

View Article and Find Full Text PDF

The antiferromagnetic topological insulator MnBiTe (MBT) exhibits an ideal platform for investigating unique topological and magnetic properties. While the transport characteristics of magnetic phase transitions in the MBT materials have been extensively studied, the understanding of their mechanical properties and magneto-mechanical coupling remains limited. Here, we utilize nanoelectromechanical systems to probe the intrinsic magnetism in MBT thin flakes through magnetostrictive coupling.

View Article and Find Full Text PDF

Aims: WNT signalling pathway dysregulation is often a critical early component in colorectal neoplasia, particularly the chromosomal instability pathway. Using two WNT reporters, and , we sought to assess whether these polyps demonstrate predictable expression patterns and if these patterns show diagnostic value.

Methods: We evaluated 23 adenomas (TA), 23 sessile serrated lesions (SSLs), 14 SSL with dysplasia and 38 traditional serrated adenomas (TSA).

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common and deadly forms of cancer worldwide, necessitating accurate and early detection to improve treatment outcomes. Traditional diagnostic methods often rely on manual examination of pathological images, which can be time-consuming and prone to human error. This study presents an advanced approach for colorectal cancer detection using a Random Hinge Exponential Distribution coupled Attention Network (RHED-CANet) on pathological images.

View Article and Find Full Text PDF

Gastrointestinal (GI) motility is regulated in a large part by the cells of the enteric nervous system (ENS), suggesting that ENS dysfunctions either associate with, or drive GI dysmotility in patients. However, except for select diseases such as Hirschsprung's Disease or Achalasia that show a significant loss of all neurons or a subset of neurons, our understanding of human ENS histopathology is extremely limited. Recent endoscopic advances allow biopsying patient's full thickness gut tissues, which makes capturing ENS tissues simpler than biopsying other neuronal tissues, such as the brain.

View Article and Find Full Text PDF