Proton-translocating NADH-ubiquinone oxidoreductase (complex I) catalyzes the oxidation of NADH by ubiquinone accompanied by the transmembrane transfer of four protons, thus contributing to the formation of a proton motive force () across the coupling membranes of mitochondria and bacteria, which drives ATP synthesis in oxidative phosphorylation. In recent years, great progress has been achieved in resolving complex I structure by means of X-ray crystallography and high-resolution cryo-electron microscopy, which has led to the formulation of detailed hypotheses concerning the molecular mechanism of coupling of the redox reaction to vectorial proton translocation. To test and probe proposed mechanisms, a comprehensive study of complex I using other methods including molecular dynamics and a variety of biochemical studies such as kinetic and inhibitory analysis is required.
View Article and Find Full Text PDFThe effects and consequences of changes in thyroid hormones (THs) level are among the actively studied topics in teleost developmental and evolutionary biology. In most of the experimental models used, the altered hormonal status (either hypo- or hyperthyroidism) is a stable characteristic of the developing organism, and the observed phenotypic outcomes are the cumulative consequences of multiple TH-induced developmental changes. Meanwhile, the influence of the transient fluctuations of TH content on skeleton development has been much less studied.
View Article and Find Full Text PDFCurr Res Struct Biol
October 2024
Mutations in the IQSEC2 gene result in severe intellectual disability, epilepsy and autism. The primary function of IQSEC2 is to serve as a guanine exchange factor (GEF) controlling the activation of ARF6 which in turn mediates membrane trafficking and synaptic connections between neurons. As IQSEC2 is a large intrinsically disordered protein little is known of the structure of the protein and how this influences its function.
View Article and Find Full Text PDFOptical coherence tomography (OCT) is a non-invasive imaging technique widely used in ophthalmology for visualizing retinal layers, aiding in the early detection and monitoring of retinal diseases. OCT is useful for detecting diseases such as age-related macular degeneration (AMD) and diabetic macular edema (DME), which affect millions of people globally. Over the past decade, the area of application of artificial intelligence (AI), particularly deep learning (DL), has significantly increased.
View Article and Find Full Text PDFElectroretinography (ERG) is a non-invasive method of assessing retinal function by recording the retina's response to a brief flash of light. This study focused on optimizing the ERG waveform signal classification by utilizing Short-Time Fourier Transform (STFT) spectrogram preprocessing with a machine learning (ML) decision system. Several window functions of different sizes and window overlaps were compared to enhance feature extraction concerning specific ML algorithms.
View Article and Find Full Text PDF