Natural product (NP) databases are crucial tools in computer-aided drug design (CADD). Over the past decade, there has been a worldwide effort to assemble information regarding natural products (NPs) isolated and characterized in certain geographical regions. In 2023, it was published LANaPDB, and to our knowledge, this is the first attempt to gather and standardize all the NP databases of Latin America.
View Article and Find Full Text PDFTwo new heptapeptides, [1-7-NαC]-crocaorbs A1 (1) and A2 (2), were isolated from the latex of Croton campanulatus. Their structures were determined using NMR spectroscopic techniques, ESI-HRMS data, Marfey's method, and further refined using molecular dynamics with simulated annealing (MD/SA). Molecular dynamics calculations of peptides 1 and 2 demonstrated greater stability in simulations using a biological solvent compared to those using DMSO.
View Article and Find Full Text PDFAlmond trees are the most cultivated nut tree in the world. The production of almonds generates large amounts of by-products, much of which goes unused. Herein, this study aimed to develop a green chemistry approach to identify and extract potentially valuable compounds from almond by-products.
View Article and Find Full Text PDFThe number of databases of natural products (NPs) has increased substantially. Latin America is extraordinarily rich in biodiversity, enabling the identification of novel NPs, which has encouraged both the development of databases and the implementation of those that are being created or are under development. In a collective effort from several Latin American countries, herein we introduce the first version of the Latin American Natural Products Database (LANaPDB), a public compound collection that gathers the chemical information of NPs contained in diverse databases from this geographical region.
View Article and Find Full Text PDFThe dominant benthic primary producers in coral reef ecosystems are complex holobionts with diverse microbiomes and metabolomes. In this study, we characterize the tissue metabolomes and microbiomes of corals, macroalgae, and crustose coralline algae via an intensive, replicated synoptic survey of a single coral reef system (Waimea Bay, O'ahu, Hawaii) and use these results to define associations between microbial taxa and metabolites specific to different hosts. Our results quantify and constrain the degree of host specificity of tissue metabolomes and microbiomes at both phylum and genus level.
View Article and Find Full Text PDF