Availability of large and diverse medical datasets is often challenged by privacy and data sharing restrictions. For successful application of machine learning techniques for disease diagnosis, prognosis, and precision medicine, large amounts of data are necessary for model building and optimization. To help overcome such limitations in the context of brain MRI, we present GenMIND: a collection of generative models of normative regional volumetric features derived from structural brain imaging.
View Article and Find Full Text PDFChronic pain is driven by factors across the biopsychosocial spectrum. Previously, we demonstrated that magnetic resonance images (MRI)-based brain-predicted age differences (brain-PAD: brain-predicted age minus chronological age) were significantly associated with pain severity in individuals with chronic knee pain. We also previously identified four distinct, replicable, multidimensional psychological profiles significantly associated with clinical pain.
View Article and Find Full Text PDFBrain age predicted differences (brain-PAD: predicted brain age minus chronological age) have been reported to be significantly larger for individuals with chronic pain compared with those without. However, a debate remains after one article showed no significant differences. Using Gaussian Process Regression, an article provides evidence that these negative results might owe to the use of mixed samples by reporting a differential effect of chronic pain on brain-PAD across pain types.
View Article and Find Full Text PDFMagnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.
View Article and Find Full Text PDF