Publications by authors named "V Rodriguez-Lugo"

The present work studies the effect of Mn doping on the crystalline structure of the Hap synthesized by the hydrothermal method at 200 °C for 24 h, from Ca(OH) and (NH)HPO, incorporating MnCl to 0.1, 0.5, 1.

View Article and Find Full Text PDF

A π-conjugated polymer (PBQT) containing bis-(2-ethylhexyloxy)-benzo [1,2-b'] bithiophene (BDT) units alternated with a quinoline-vinylene trimer was obtained by the Stille reaction. The chemical structure of the polymer was verified by nuclear magnetic resonance (H NMR), Fourier transform infrared (FT-IR), and mass spectroscopy (MALDI-TOF). The intrinsic photophysical properties of the solution were evaluated by absorption and (static and dynamic) fluorescence.

View Article and Find Full Text PDF

Environmental pollution today is a latent risk for humanity, here the need to recycle waste of all kinds. This work is related to the kinetic study of the leaching of gold and copper contained in waste electrical and electronic equipment (WEEE) and silver contained in mining wastes (MW), using the O-thiosemicarbazide system. The results obtained show that this non-toxic leaching system is adequate for the leaching of said metals.

View Article and Find Full Text PDF

In this work we have studied infinite size silicon-germanium alloy nanotubes of several types, armchair, zigzag and chiral, by theoretical analysis based on density functional theory as implemented in the SIESTA code, which utilizes a linear combination of atomic orbitals and a generalized gradient approximation proposed by Perdew, Burke and Ernzerhof (GGA-PBE) for the exchange and correlation energy. The structures were relaxed until the atomic forces were less than 0.0001 eV Å-1.

View Article and Find Full Text PDF

Wet chemical synthesis of hydroxyapatite (HAp) nanostructures was carried out with different solution pH values (9, 10 and 11) and sintering temperatures (300°C, 500°C, 700°C and 900°C). The effects of pH and sintering temperature on the structural and morphological properties of nanocrystalline HAp powders were presented. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were performed to obtain the crystalline structure, chemical composition, morphology and particle size of the HAp powders.

View Article and Find Full Text PDF