We present a corrigendum to our Letter [Opt. Lett.35, 703 (2010)10.
View Article and Find Full Text PDFA method is proposed to control the aspect ratio (epsilon) of elongated nanoparticles obtained by ion implantation in a transparent matrix. The procedure was tested for Ag spheroids in silica and we could accurately change epsilon in the range from the maximum value obtained by the ion implantation (around 3.0 in this case) to 1.
View Article and Find Full Text PDFHigh-energy metallic ions were implanted in silica matrices, obtaining spherical-like metallic nanoparticles (NPs) after a proper thermal treatment. These NPs were then deformed by irradiation with Si ions, obtaining an anisotropic metallic nanocomposite. An average large birefringence of 0.
View Article and Find Full Text PDFA method is proposed to estimate the size distribution of nearly spherical metallic nanoparticles (NPs) from optical extinction spectroscopy (OES) measurements based on Mie's theory and an optimization algorithm. The described method is compared against two of the most widely used techniques for the task: transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS). The size distribution of Au and Cu NPs, obtained by ion implantation in silica and a subsequent thermal annealing in air, was determined by TEM, grazing-incidence SAXS (GISAXS) geometry, and our method, and the average radius obtained by all the three techniques was almost the same for the two studied metals.
View Article and Find Full Text PDF