Publications by authors named "V Reichel"

The routine use of SERS as an analytical technique has been hindered by practical considerations among which the irreproducibility of its signals and the lack of robustness of its calibration. In the present work, we examine a strategy to perform quantitative SERS without the need for calibration. The method reinvests a colorimetric volumetric titration procedure to determine water hardness but involves monitoring the progression of the titration through the SERS signal of a complexometric indicator.

View Article and Find Full Text PDF

In this paper we present numerical and experimental results revealing that the mode instability threshold of highly Yb-doped, Ce/Al co-doped pedestal fibers is affected by the size of the index-increased pedestal structure surrounding the core. An alternative preparation technology for the realization of large mode area fibers with very large Al-doped silica pedestals is introduced. Three different pedestal fiber design iterations characterized by low photodarkening were manufactured and tested in counter-pumped amplifier setups.

View Article and Find Full Text PDF

Iron oxide nanoparticles are a promising platform for biomedical applications, both in terms of diagnostics and therapeutics. In addition, arginine-rich polypeptides are known to penetrate across cell membranes. Here, we thus introduce a system based on magnetite nanoparticles and the polypeptide poly-l-arginine (polyR-FeO).

View Article and Find Full Text PDF

Surface Enhanced Raman Scattering (SERS) has been widely praised for its extreme sensitivity but has not so far been put to use in routine analytical applications, with the accessible scale of measurements a limiting factor. We report here on a frugal implementation of SERS dedicated to the quantitative detection of Zn in water, Zn being an element that can serve as an indicator of contamination by heavy metals in aquatic bodies. The method consists in randomly aggregating simple silver colloids in the analyte solution in the presence of a complexometric indicator of Zn, recording the SERS spectrum with a portable Raman spectrometer and analysing the data using multivariate calibration models.

View Article and Find Full Text PDF

Magnetotactic bacteria (MTB) are a heterogeneous group of Gram-negative prokaryotes, which all produce special magnetic organelles called magnetosomes. The magnetosome consists of a magnetic nanoparticle, either magnetite (FeO) or greigite (FeS), embedded in a membrane, which renders the systems colloidaly stable, a desirable property for biotechnological applications. Although these bacteria are able to regulate the formation of magnetosomes through a biologically-controlled mechanism, the environment in general and the physico-chemical conditions surrounding the cells in particular also influence biomineralization.

View Article and Find Full Text PDF