The aim of this study is to investigate the influence of cross-linking and reinforcements in gelatin on the physico-mechanical properties of obtained composites. The gelatin-based composites cross-linked with citric acid (CA) were prepared: gelatin type B (GB) and β-tricalcium phosphate (β-TCP) and novel hybrid composite GB with β-TCP and hydroxyapatite (HAp) particles, and their structure, thermal, and mechanical properties were compared with pure gelatin B samples. FTIR analysis revealed that no chemical interaction between the reinforcements and gelatin matrix was established during the processing of hybrid composites by the solution casting method, proving the particles had no influence on GB cross-linking.
View Article and Find Full Text PDFWhile dental poly methyl methacrylate(PMMA) possesses distinctive qualities such as ease of fabrication, cost-effectiveness, and favorable physical and mechanical properties, these attributes alone are inadequate to impart the necessary impact strength and hardness. Consequently, pure PMMA is less suitable for dental applications. This research focused on the incorporation of Strontium titanate (SrTiO-STO) and hybrid filler STO/Manganese oxide (MnO) to improve impact resistance and hardness.
View Article and Find Full Text PDFWood-plastic composites (WPCs) are some of the most common modern composite materials for interior and exterior design that combine natural waste wood properties and the molding possibility of a thermoplastic polymer binder. The addition of reinforcing elements, binding agents, pigments, and coatings, as well as changes to the microstructure and composition, can all affect the quality of WPCs for particular purposes. To improve the properties, hybrid composite panels of WPCs with 30 wt.
View Article and Find Full Text PDFHigh performance polymers with bio-based modifiers are promising materials in terms of applications and environmental impact. In this work, raw acacia honey was used as a bio-modifier for epoxy resin, as a rich source of functional groups. The addition of honey resulted in the formation of highly stable structures that were observed in scanning electron microscopy images as separate phases at the fracture surface, which were involved in the toughening of the resin.
View Article and Find Full Text PDF