With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species.
View Article and Find Full Text PDFSci Total Environ
March 2024
Forests are continuously altered by disturbances. Yet, knowledge of global pattern of forest disturbance agents, its drivers, and shifts under changing climate remain scarce. Here we present a meta-analysis of current and projected (+2° and + 4 °C) distribution of forest disturbance agents causing immediate tree mortality (i.
View Article and Find Full Text PDFForests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events.
View Article and Find Full Text PDF