Ultrathin electrospun nanofibrous membranes (NfMs) based on poly(γ-benzyl-L-glutamate) (PBLG) were prepared. Scanning electron microscopy analysis revealed the production of a high-quality, bead-free nanofibrous membrane. The membrane thicknesses, ranging from 1.
View Article and Find Full Text PDFThis study develops and characterizes novel biodegradable soft hydrogels with dual porosity based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers cross-linked by hydrolytically degradable linkers. The structure and properties of the hydrogels are designed as scaffolds for tissue engineering and they are tested in vitro with model mesenchymal stem cells (rMSCs). Detailed morphological characterization confirms dual porosity suitable for cell growth and nutrient transport.
View Article and Find Full Text PDFOne of the challenges in clinical translation of cell-replacement therapies is the definition of optimal cell generation and storage/recovery protocols which would permit a rapid preparation of cell-treatment products for patient administration. Besides, the availability of injection devices that are simple to use is critical for potential future dissemination of any spinally targeted cell-replacement therapy into general medical practice. Here, we compared the engraftment properties of established human-induced pluripotent stem cells (hiPSCs)-derived neural precursor cell (NPCs) line once cells were harvested fresh from the cell culture or previously frozen and then grafted into striata or spinal cord of the immunodeficient rat.
View Article and Find Full Text PDFThe critical requirements in developing clinical-grade human-induced pluripotent stem cells-derived neural precursors (hiPSCs-NPCs) are defined by expandability, genetic stability, predictable post-grafting differentiation, and acceptable safety profile. Here, we report on the use of manual-selection protocol for generating expandable and stable human NPCs from induced pluripotent stem cells. The hiPSCs were generated by the reprogramming of peripheral blood mononuclear cells with Sendai-virus (SeV) vector encoding Yamanaka factors.
View Article and Find Full Text PDF