Publications by authors named "V Pragathi Masamsetti"

Analyzing the impact of genetic mutations on early neurogenesis of mammalian embryos in conventional mouse mutant models is laborious and time-consuming. To overcome these constraints and to fast-track the phenotypic analysis, we developed a protocol that harnesses the amenability of engineering genetic modifications in embryonic stem cells from which mid-gestation mouse chimeras and in vitro neuruloids are generated. These stem cell-based chimera and neuruloid experimental models allow phenotyping at early developmental time points of neurogenesis.

View Article and Find Full Text PDF

Iwatsuki and colleagues have generated self-renewing pluripotent stem cells from the pre-gastrulation epiblast of the rat embryo and from other cellular sources: rat embryonic stem cells (rESCs) and epiblast-like cells derived from the rESCs. These rat epiblast-derived stem cells (rEpiSCs) display germ-line competence that is characteristic of mouse formative stem cells and early signature of specification of germ layer lineages typical of primed state mouse epiblast stem cells.

View Article and Find Full Text PDF

The interplay of signalling input and downstream transcriptional activity is the key molecular attribute driving the differentiation of germ layer tissue and the specification of cell lineages within each germ layer during gastrulation. This review delves into the current understanding of signalling and transcriptional control of lineage development in the germ layers of mouse embryo and non-human primate embryos during gastrulation and highlights the inter-species conservation and divergence of the cellular and molecular mechanisms of germ layer development in the human embryo.

View Article and Find Full Text PDF

Mouse embryo studies are pivotal for the understanding of early development. Analysis of the spatial and temporal changes of protein expression during development of a mouse embryo allows us to identify the genetic basis of errors of development in animal disease models. Immunofluorescence is a powerful technique to study the localization and variation in expression pattern of specific proteins in cells, tissues, and organs.

View Article and Find Full Text PDF

The specification of anterior head tissue in the late gastrulation mouse embryo relies on signaling cues from the visceral endoderm and anterior mesendoderm (AME). Genetic loss-of-function studies have pinpointed a critical requirement of LIM homeobox 1 (LHX1) transcription factor in these tissues for the formation of the embryonic head. Transcriptome analysis of embryos with gain-of-function LHX1 activity identified the forkhead box gene, as one downstream target of LHX1 in late-gastrulation E7.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsrhejhj4tjnoqj1djlcvviquqkbpp30e): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once