Publications by authors named "V Povoa"

Cancer patients often undergo rounds of trial-and-error to find the most effective treatment because there is no test in the clinical practice for predicting therapy response. Here, we conduct a clinical study to validate the zebrafish patient-derived xenograft model (zAvatar) as a fast predictive platform for personalized treatment in colorectal cancer. zAvatars are generated with patient tumor cells, treated exactly with the same therapy as their corresponding patient and analyzed at single-cell resolution.

View Article and Find Full Text PDF

Cell counting is a frequent task in medical research studies. However, it is often performed manually; thus, it is time-consuming and prone to human error. Even so, cell counting automation can be challenging to achieve, especially when dealing with crowded scenes and overlapping cells, assuming different shapes and sizes.

View Article and Find Full Text PDF

Currently, experimental animals are widely used in biological and medical research. However, the scientific community has raised several bioethical concerns, such as the number of animals required to achieve reproducible and statistically relevant results. These concerns involve aspects related to pain, discomfort, and unwanted animal loss.

View Article and Find Full Text PDF

The Estudo de Descontinuação de Imatinibe após Pioglitazona (EDI-PIO) is a single-center, longitudinal, prospective, phase 2, non-randomized, open, clinical trial (NCT02852486, August 2, 2016 retrospectively registered) for the discontinuation of imatinib after concomitant use of pioglitazone, being the first of its kind in a Brazilian population with chronic myeloid leukemia. Due to remaining of leukemic quiescent cells that are not affected by tyrosine kinase inhibitors, it has been suggested the use of pioglitazone, a PPARγ agonist, together with imatinib as a strategy for the maintenance of deep molecular response. The clinical benefit to this association is still controversial, and the metabolic alteration along this process remains unclear.

View Article and Find Full Text PDF

Zebrafish larval xenografts are being widely used for cancer research to perform in vivo and real-time studies of human cancer. The possibility of rapidly visualizing the response to anti-cancer therapies (chemo, radiotherapy, and biologicals), angiogenesis and metastasis with single cell resolution, places the zebrafish xenograft model as a top choice to develop preclinical studies. The zebrafish larval xenograft assay presents several experimental advantages compared to other models, but probably the most striking is the reduction of size scale and consequently time.

View Article and Find Full Text PDF