The brain is a highly complex physical system made of assemblies of neurons that work together to accomplish elaborate tasks such as motor control, memory and perception. How these parts work together has been studied for decades by neuroscientists using neuroimaging, psychological manipulations, and neurostimulation. Neurostimulation has gained particular interest, given the possibility to perturb the brain and elicit a specific response.
View Article and Find Full Text PDFState-dependent non-invasive brain stimulation (NIBS) informed by electroencephalography (EEG) has contributed to the understanding of NIBS inter-subject and inter-session variability. While these approaches focus on local EEG characteristics, it is acknowledged that the brain exhibits an intrinsic long-range dynamic organization in networks. This proof-of-concept study explores whether EEG connectivity of the primary motor cortex (M1) in the pre-stimulation period aligns with the Motor Network (MN) and how the MN state affects responses to the transcranial magnetic stimulation (TMS) of M1.
View Article and Find Full Text PDFWe introduce a blockwise generalisation of the Antisymmetric Cross-Bicoherence (ACB), a statistical method based on bispectral analysis. The Multi-dimensional ACB (MACB) is an approach that aims at detecting quadratic lagged phase-interactions between vector time series in the frequency domain. Such a coupling can be empirically observed in functional neuroimaging data, e.
View Article and Find Full Text PDFBackground: The investigation of mindfulness meditation practice, classically divided into focused attention meditation (FAM), and open monitoring meditation (OMM) styles, has seen a long tradition of theoretical, affective, neurophysiological and clinical studies. In particular, the high temporal resolution of magnetoencephalography (MEG) or electroencephalography (EEG) has been exploited to fill the gap between the personal experience of meditation practice and its neural correlates. Mounting evidence, in fact, shows that human brain activity is highly dynamic, transiting between different brain states (microstates).
View Article and Find Full Text PDF