Instantons, which are nonperturbative solutions to Yang-Mills equations, provide a signal for the occurrence of quantum tunneling between distinct classes of vacua. They can give rise to decays of particles otherwise forbidden. Using data collected at the Pierre Auger Observatory, we search for signatures of such instanton-induced processes that would be suggestive of super-heavy particles decaying in the Galactic halo.
View Article and Find Full Text PDFWe present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons in air shower simulations and constrains models of hadronic interactions at ultrahigh energies.
View Article and Find Full Text PDFWe report a measurement of the energy spectrum of cosmic rays above 2.5×10^{18} eV based on 215 030 events. New results are presented: at about 1.
View Article and Find Full Text PDFCrystalline ice formation requires water molecules to be sufficiently mobile to find and settle on the thermodynamically most stable site. Upon cooling, however, diffusion and rearrangement become increasingly kinetically difficult. Water ice grown by the condensation of water vapor in laboratory is thus generally assumed to be in a metastable amorphous form below 100 K.
View Article and Find Full Text PDFUltrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (E_{CM}=110-170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.
View Article and Find Full Text PDF