Hydrolytic deamination of cytosines in DNA creates uracil and, if unrepaired, these lesions result in C to T mutations. We have suggested previously that a possible way in which cells may prevent or reduce this chemical reaction is through the binding of proteins to DNA. We use a genetic reversion assay to show that a restriction enzyme, PspGI, protects cytosines within its cognate site, 5'-CCWGG (W is A or T), against deamination under conditions where no DNA cleavage can occur.
View Article and Find Full Text PDFSpecific protein-nucleic acid interactions are of paramount importance for the propagation, maintenance and expression of genetic information. Restriction endonucleases serve as model systems to study the mechanisms of DNA recognition by proteins. SsoII is a Type II restriction endonuclease that recognizes the double stranded sequence downward arrow CCNGG and cleaves it in the presence of Mg(2+)-ions, as indicated.
View Article and Find Full Text PDFSpecific cleavage of large DNA molecules at few sites, necessary for the analysis of genomic DNA or for targeting individual genes in complex genomes, requires endonucleases of extremely high specificity. Restriction endonucleases (REase) that recognize DNA sequences of 4-8 bp are not sufficiently specific for this purpose. In principle, the specificity of REases can be extended by fusion to sequence recognition modules, e.
View Article and Find Full Text PDFProperties of 2'-aldehyde-containing double stranded DNAs (dsDNAs) have been studied for the first time as substrate analogs of the restriction endonuclease SsoII. These reactive oligonucleotides were successfully cross-linked to the restriction endonuclease SsoII by reductive amination, and conditions for DNA-protein conjugate trypsinolysis followed by the oligonucleotide-peptide conjugate purification were optimized. Use of MALDI-TOF mass spectrometry revealed that covalent linkage forms between the sugar moiety of the central pyrimidine nucleoside of the SsoII recognition site and Lys173 of the enzyme.
View Article and Find Full Text PDF