Survival rate of head and neck squamous cell carcinomas (HNSCC) patients are still to date very poor, and the application of innovative clinical approaches are urgently needed. Cold atmospheric plasmas (CAPs) are partially ionized gases that have shown anti-tumor effectiveness over a wide range of cancer types with potential application into clinics. However, the comprehension of the mechanisms underlying indirect CAP effects plays a key role for the prediction of treatment outcomes.
View Article and Find Full Text PDFAim: The intricate structure of the tooth root canals has a role in the colonization and biofilm formation in hidden areas that are hardly reached by standard endodontic treatments. This review aims at summarizing data from and studies for a better understanding of the application of cold atmospheric plasma (CAP) for the disinfection of dental root canals.
Methods: PubMed, Scopus, and Web of Science databases were screened.
Introduction: Dental implant treatment can still fail due to various factors. The aim of this retrospective cohort study was to assess the influence of operator experience in a postgraduate educational setting, as well as patient, implant, and surgical risk factors on the incidence of the dental implant failure.
Methods: The dental records of 1049 implants with a mean follow-up of 794.
Objective: Cold atmospheric plasma (CAP) is a novel approach for cancer treatment. It can be used to treat liquids-plasma-activated media (PAM)-which are then transferred to the target as an exogenous source of reactive oxygen and nitrogen species (RONS). The present study aimed at chemically characterizing different PAM and assessing their in vitro selectivity against head and neck cancer cells (HNC).
View Article and Find Full Text PDFThe aim of this study was to evaluate the antimicrobial efficacy of an air gas soft jet CAP for its potential use in removing oral biofilms, given that plasma-based technologies have emerged as promising methods in periodontology. Two types of biofilms were developed, one by Streptococcus mutans UA 159 bacterial strain and the other by a complex mixture of saliva microorganisms isolated from a patient with periodontitis. This latter biofilm was characterized via Next Generation Sequencing to determine the main bacterial phyla.
View Article and Find Full Text PDF