Mutations targeting distinct domains of the neuron-specific kinesin KIF5A associate with different neurodegenerative/neurodevelopmental disorders, but the molecular bases of this clinical heterogeneity are unknown. We characterised five key mutants covering the whole spectrum of KIF5A-related phenotypes: spastic paraplegia (SPG, R17Q and R280C), Charcot-Marie-Tooth disease (CMT, R864*), amyotrophic lateral sclerosis (ALS, N999Vfs*40), and neonatal intractable myoclonus (NEIMY, C975Vfs*73) KIF5A mutants. CMT-R864*-KIF5A and ALS-N999Vfs*40-KIF5A showed impaired autoinhibition and peripheral localisation accompanied by altered mitochondrial distribution, suggesting transport competence disruption.
View Article and Find Full Text PDFBone marrow microenvironmental stimuli profoundly impact hematopoietic stem cell fate and biology. As G protein-coupled receptors, the bitter taste receptors (TAS2Rs) are key in transmitting extracellular stimuli into an intracellular response, within the oral cavity but also in extraoral tissues. Their expression in the bone marrow (BM)-derived cells suggests their involvement in sensing the BM microenvironmental fluctuation.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is characterized by the progressive, irreversible loss of upper and lower motor neurons (UMNs, LMNs). MN axonal dysfunctions are emerging as relevant pathogenic events since the early ALS stages. However, the exact molecular mechanisms leading to MN axon degeneration in ALS still need to be clarified.
View Article and Find Full Text PDF