An in silico redesign of the secondary quinone electron acceptor (Q) binding pocket of the D1 protein of Photosystem II (PSII) suggested that mutations of the F265 residue would affect atrazine binding. Chlamydomonas reinhardtii mutants F265T and F265S were produced to obtain atrazine-hypersensitive strains for biosensor applications, and the mutants were indeed found to be more atrazine-sensitive than the reference strain IL. Fluorescence and thermoluminescence data agree with a weak driving force and confirm slow electron transfer but cannot exclude an additional effect on protonation of the secondary quinone.
View Article and Find Full Text PDFThe extensive development in light-emitting diodes (LEDs) in recent years provides an opportunity to positively influence plant growth and biomass accumulation and to optimize biochemical composition and nutritional quality. This study aimed to assess how different light spectra affect the growth, photosynthesis and biochemical properties of Eruca sativa. Therefore two LED lighting modes - red:blue (RB, 1:1) and red:green:blue (RGB, 2:1:2) were compared to the conventional white light fluorescent tubes (WL).
View Article and Find Full Text PDFIntroduction: Process Mining (PM) has emerged as a transformative tool in healthcare, facilitating the enhancement of process models and predicting potential anomalies. However, the widespread application of PM in healthcare is hindered by the lack of structured event logs and specific data privacy regulations.
Concept: This paper introduces a pipeline that converts routine healthcare data into PM-compatible event logs, leveraging the newly available permissions under the Health Data Utilization Act to use healthcare data.
Datasets consist of measurement data and metadata. Metadata provides context, essential for understanding and (re-)using data. Various metadata standards exist for different methods, systems and contexts.
View Article and Find Full Text PDFSince water scarcity is one of the main risks for the future of agriculture, studying the ability of different wheat genotypes to tolerate a water deficit is fundamental. This study examined the responses of two hybrid wheat varieties (Gizda and Fermer) with different drought resistance to moderate (3 days) and severe (7 days) drought stress, as well as their post-stress recovery to understand their underlying defense strategies and adaptive mechanisms in more detail. To this end, the dehydration-induced alterations in the electrolyte leakage, photosynthetic pigment content, membrane fluidity, energy interaction between pigment-protein complexes, primary photosynthetic reactions, photosynthetic and stress-induced proteins, and antioxidant responses were analyzed in order to unravel the different physiological and biochemical strategies of both wheat varieties.
View Article and Find Full Text PDF