Publications by authors named "V Pascoli"

Addiction-related compulsion-like behavior can be modeled in rodents with drug self-administration (SA) despite harmful consequences. Recent studies suggest that the potentiation of glutamatergic transmission at the orbitofrontal cortex (OFC) to dorsal striatum (DS) synapses drives the transition from controlled to compulsion-like SA. However, the timing of the induction of this synaptic plasticity remains elusive.

View Article and Find Full Text PDF

Background: Activation of the mesolimbic dopamine system is positively reinforcing. After repeated activation, some individuals develop compulsive reward-seeking behavior, which is a core symptom of addiction. However, the underlying neural mechanism remains elusive.

View Article and Find Full Text PDF

Compulsive drug use despite adverse consequences defines addiction. While mesolimbic dopamine signaling is sufficient to drive compulsion, psychostimulants such as cocaine also boost extracellular serotonin (5-HT) by inhibiting reuptake. We used SERT Met172 knockin (SertKI) mice carrying a transporter that no longer binds cocaine to abolish 5-HT transients during drug self-administration.

View Article and Find Full Text PDF

Prescription stimulants, such as d-amphetamine or methylphenidate are used to treat suffering from attention-deficit hyperactivity disorder (ADHD). They potently release dopamine (DA) and norepinephrine (NE) and cause phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 in the striatum. Whether other brain regions are also affected remains elusive.

View Article and Find Full Text PDF