Publications by authors named "V Parikh"

The growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).

View Article and Find Full Text PDF

Proteins often exist in multiple conformational states, influenced by the binding of ligands or substrates. The study of these states, particularly the apo (unbound) and holo (ligand-bound) forms, is crucial for understanding protein function, dynamics, and interactions. In the current study, we use AlphaFold2, which combines randomized alanine sequence masking with shallow multiple sequence alignment subsampling to expand the conformational diversity of the predicted structural ensembles and capture conformational changes between apo and holo protein forms.

View Article and Find Full Text PDF
Article Synopsis
  • - Hypertrophic cardiomyopathy (HCM) was traditionally seen as caused by rare, high-risk single-gene changes, but new research indicates common low-risk variants (LowSVs) also play a significant role in the disease.
  • - In a study of over 6000 patients, 12 LowSVs were discovered, which are relatively common in the general population and more prevalent in HCM patients, suggesting they may influence disease severity and risk.
  • - While LowSVs alone are linked to a later onset of HCM and fewer complications, their presence alongside more severe genetic variants increases health risks significantly.
View Article and Find Full Text PDF

Proteins often exist in multiple conformational states, influenced by the binding of ligands or substrates. The study of these states, particularly the apo (unbound) and holo (ligand-bound) forms, is crucial for understanding protein function, dynamics, and interactions. In the current study, we use AlphaFold2 that combines randomized alanine sequence masking with shallow multiple sequence alignment subsampling to expand the conformational diversity of the predicted structural ensembles and capture conformational changes between apo and holo protein forms.

View Article and Find Full Text PDF

Background: An improved understanding of the natural history in NYHA functional class I patients with obstructive hypertrophic cardiomyopathy (oHCM) is needed.

Objectives: Using a multicenter registry (SHaRe [Sarcomeric Human Cardiomyopathy Registry]), this study described the natural history in patients with oHCM who were classified as NYHA functional class I at the initial visit compared with patients classified as NYHA functional class II and reported baseline characteristics associated with incident clinical events.

Methods: Incident events assessed included a composite of NYHA functional class III to IV symptoms, left ventricular ejection fraction <50%, atrial fibrillation, stroke, ventricular arrhythmias, septal reduction therapy, ventricular assist device or transplantation, or death.

View Article and Find Full Text PDF